Chitosan-Glycolic Acid Gel Modification of Chloride Ion Transport in Mammalian Skin: An In Vitro Study

Molecules. 2023 Sep 12;28(18):6581. doi: 10.3390/molecules28186581.

Abstract

Chitosan, a polyaminosaccharide with high medical and cosmetic potential, can be combined with the beneficial properties of glycolic acid to form a gel that not only moisturizes the skin, but also has a regenerative effect. Its involvement in the activation of biochemical processes may be associated with the activity of skin ion channels. Therefore, the aim of the research was to evaluate the immediate (15 s) and long-term (24 h) effect of chitosan-glycolic acid gel (CGG) on the transepithelial electric potential and the transepithelial electric resistance (R) of skin specimens tested in vitro. Stimulation during immediate and prolonged application of CGG to skin specimens resulted in a significant decrease in the measured minimal transepithelial electric potential (PDmin). The absence of any change in the R after the CGG application indicates that it does not affect the skin transmission, or cause distortion, microdamage or changes in ion permeability. However, the reduction in potential may be due to the increased transport of chloride ions, and thus water, from outside the cell into the cell interior. Increased secretion of chloride ions is achieved by stimulating the action of the CFTR (cystic fibrosis transmembrane conductance). It can be assumed that chitosan gently stimulates the secretion of chlorides, while maintaining a tendency to reduce the transport of sodium ions, without causing deformation or tissue damage.

Keywords: chitosan; chloride ion transport; cystic fibrosis transmembrane regulator; electric potential; electric resistance; epithelial sodium channels; skin.

Grants and funding

This research received no external funding.