Effects of 42 months of GH treatment on bone mineral density and bone turnover in GH-deficient adults

Eur J Endocrinol. 1999 Jun;140(6):545-54. doi: 10.1530/eje.0.1400545.

Abstract

Objective: To study the effects of GH treatment for up to 42 months on bone mineral density (BMD) and bone turnover.

Design and methods: BMD with dual energy X-ray absorptiometry, serum type I procollagen carboxy-terminal propeptide (PICP), serum type I collagen carboxy-terminal telopeptide (ICTP) and serum IGF-I were assessed in 71 adults with GH deficiency. There were 44 men and 27 women, aged 20 to 59 (median 43) years. Thirty-two patients completed 36 months and 20 patients 42 months of treatment.

Results: The BMD increased for up to 30-36 months and plateaued thereafter. In the whole study group, the maximum increase of BMD was 5.0% in the lumbar spine (P<0. 001), 5.9% (P<0.01) in the femoral neck, 4.9% (NS, P>0.05) in the Ward's triangle and 8.2% (P<0.001) in the trochanter area. The serum concentrations of PICP (202.6+/-11.5 vs 116.3+/-5.4 microg/l; mean+/-s.e.m.) and ICTP (10.5+/-0.6 vs 4.4+/-0.3 microg/l) doubled (P<0.001) during the first 6 months of GH treatment but returned to baseline by the end of the study (130.0+/-10.4 and 5.6+/-0.7 microg/l respectively), despite constantly elevated serum IGF-I levels (39. 6+/-4.1 nmol/l at 42 months vs 11.9+/-0.9 nmol/l at baseline; P<0.001). The responses to GH treatment of serum IGF-I, PICP, ICTP (P<0.001 for all; ANOVA) and of the BMD in the lumbar spine (P<0.05), in the femoral neck and the trochanter (P<0.001 for both) were more marked in men than in women. At the end of the study the BMD had increased at the four measurement sites by 5.7-10.6% (P<0.01-0.001) in patients with at least osteopenia at baseline and by 0.1-5.3% (NS P<0.05) in those with normal bone status (P<0.001 for differences between groups; ANOVA). Among patients who completed 36-42 months of treatment, the number of those with at least osteopenia was reduced to more than a half. The response of BMD to GH treatment was more marked in young than in old patients at three measurement sites (P<0. 05-<0.001; ANOVA). In the multiple regression analysis the gender and the pretreatment bone mass appeared to be independent predictors of three measurement sites, whereas the age independently determined only the vertebral BMD.

Conclusions: GH treatment in GH-deficient adults increased BMD for up to 30-36 months, with a plateau thereafter. Concurrently with the plateau in BMD the bone turnover rate normalized. From the skeletal point of view GH-deficient patients exhibiting osteopenia or osteoporosis should be considered as candidates for GH supplementation of at least 3-4 years.

Publication types

  • Clinical Trial
  • Comparative Study
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Age Factors
  • Biomarkers / blood
  • Bone Density / drug effects*
  • Bone Remodeling / drug effects*
  • Child
  • Collagen / blood
  • Collagen Type I
  • Double-Blind Method
  • Female
  • Femur
  • Forearm
  • Human Growth Hormone / administration & dosage
  • Human Growth Hormone / deficiency*
  • Human Growth Hormone / therapeutic use*
  • Humans
  • Insulin-Like Growth Factor I / analysis
  • Lumbar Vertebrae
  • Male
  • Middle Aged
  • Peptide Fragments / blood
  • Peptides / blood
  • Procollagen / blood
  • Regression Analysis

Substances

  • Biomarkers
  • Collagen Type I
  • Peptide Fragments
  • Peptides
  • Procollagen
  • collagen type I trimeric cross-linked peptide
  • procollagen type I carboxy terminal peptide
  • Human Growth Hormone
  • Insulin-Like Growth Factor I
  • Collagen